
INNOCODE.COM

We have helped startups and enterprises
launch and grow digital products since 2010

Digital Products
Development

2 3

Valerii Shypunov
CTO og Partner

When we started Innocode in 2010 we wanted to use com-
mon sense as much as possible. With the growth of Agile
development methodologies, people were already saying
that ‘technology’ is only part of the success when you build a
new digital product. No matter how good the technology is,
or how good your delivery skills are, it doesn’t matter if you
are building the wrong thing. How do you define what is the
right thing to build? First, you ask ‘Why’ very often. Engineers
are often obsessed with the question ‘How’, for example: how
to build this and that, how that will work together, etc. Man-
agers are often thinking ‘What’, ‘what is the scope, what is
the budget, what is the bonus’. But in order to make the right
decisions, we need to have an environment with a good level
of transparency, trust and knowledge sharing.
An environment where everyone has a shared context on
why we are building something, and also the tools, process-
es and methodologies that allows us to move the discussion
from subjective to objective measures. This has become a
part of our culture, something deeply rooted in our process-
es, daily operations and rituals.
 Innocode is a unique company in the sense that we are
running our own product department and selling our prod-
ucts globally, but also building digital products for our se-
lected partners and clients. Such an approach is beneficial
both for us and for our partners. Because we have a deep
understanding of both positions, we continuously learn how
to be a better trusted partner.

WE CARE
ABOUT YOUR
PRODUCT

V
A

L
E

R
II’S

 C
O

R
N

E
R

Content

Design and development

methodologies				 4

Culture and recruitment		 7

TicketCo Case Study			 8

Workflow	 	 	 	 10

4 5

innocode.com

How are the design and
development methodologies
implemented in the process?

The most common first step in the collaboration
on a new concept is a pre-project. The goal of the
pre-project is to build context awareness and reduce
uncertainty.

Workshop
We believe it is extremely important to meet people
that you are going to work with face to face. All our
pre-projects starts with a workshop, either at the
client’s premises or an Innocode office.
Why is this important?
1.	 To find out whether we are compatible or not.

Even though it’s about all the digital product
development, there are human beings on both
sides of this process, and sometimes people are
compatible, sometimes they are not. Better to
find this out as soon as possible.

2.	 A workshop with all participants in the same
room provides the possibility to focus on the
business context and transfer the knowledge
more efficiently. Communication is also more
effective.

 The goal of the workshop is to brainstorm and
document as much knowledge about the business
domain, context, market and identified hypothesis as
possible.
Workshop duration: 1-3 days.

Pre-project research
After the workshop, the team will work iteratively
on conducting the business and technical research.
It will usually cover the following areas:
•	 Business model research
•	 Competition research
•	 Technological viability research
•	 Risk analysis

 The main goal of the research is to identify the
core hypothesis of the new digital product and
the most efficient way of validating this
hypothesis.
 When the core hypothesis is identified, the
team will prepare the scope for the minimum
viable product (MVP), both in the form of
high-level requirements and a set of low-fi-
delity and high-fidelity prototypes. It is very
important to identify the metrics and scenarios on
how the core hypothesis will be validated, so it will be

Each of the methodologies has their advantages and disadvantages, so we
are not treating a particular methodology as the ‘silver bullet’, instead we
are building cross-functional teams sufficient enough in the methodologies
specified to be able to use the advantages of one in order to cover the dis-
advantages of another.
 While design thinking and agile development methodologies compe-
tence were acquired during the process of building digital products for
Innocode’s clients and partners, business architecture competence was
built when Innocode started building their own digital products in 2015.

Design Thinking:
puts the needs of the end user at the forefront
Advantages:
•	 End user and subject matter expert defined

requirements
•	 Top of the knowledge funnel
•	 Everything is possible

Disadvantages:
•	 Does not focus on cost or schedule
•	 Can set expectations incorrectly

Agile:
puts rapid delivery of functionality and updates first
Advantages:
•	 True rapid deployment of functionality and

fixes
•	 Responsiveness

Disadvantages:
•	 Can result in MVP being“too minimal”

Business Architecture:
puts business needs and constraints first
Advantages:
•	 Better understanding of real boundaries
•	 Forces financial analysis

Disadvantages:
•	 Internally focused
•	 Limits thinking

Design Thinking:

AgileBusiness
Architecture

possible to pivot at the right time, if needed.
After the pre-project research, Innocode will provide
the pre-project report.

Pre-project report artifacts
•	 Risk analysis report
•	 High-level requirements
•	 Ballpark estimates (we use a flexible model of

risk handling in the estimates in preparation for
scope changes)

•	 Success scenario and KPI definitions
•	 Team composition
•	 Cooperation model (billing, communication plan,

responsibilities of Innocode and the client)
•	 Design

•	 Low-fidelity prototype to evaluate interaction
flows

•	 High-fidelity prototype screens in Figma
•	 Animations and transitions effects, close to the

real behavior of the product/service

Pre-project values for
clients:
•	 Cost savings via fast validation of the product’s

core hypothesis
•	 Client has no commitments for further

development phases and can decide to
postpone the delivery, proceed with other
vendors, etc.

Design and
Development
Methodologies

REDUCE UNCERTAINTY

6 7

For Innocode, providing superior quality and value over time is more important than grow-
ing the headcount. We are hiring people to grow with Innocode and not just for the partic-
ular one-time project. Our recruitment process is multistage, involving multiple stakehold-
ers and even a test-day.
 Zero-waste is an important part of the Innocode culture, and it is not limited to physical
waste, but waste of time as well. When you are hiring someone, people can prepare and
make a great impression in the interview, but when you actually start working with them,
it doesn’t always work out well. So we decided to create the test-day, where the person
can spend a whole day working on the actual tasks with the actual team. During lunch-
time, the person also gets to spend time with their other colleagues. Changing jobs is an
important decision, and we want to be open and transparent to help people understand if
Innocode is a good fit for them, and also gives the team a chance to evaluate their future
colleague.
 Being open and proactive, involved and curious, trying to resolve issues and not just
being protective what makes Innocode employees different.

Product Development
After the project kick-off, a cross-functional team
(defined during the pre-project) will handle the
product development.
 Agile development practices presume that the
scope might change along the way, thus the separate
process of grooming and preparing the scope going
in parallel with the actual development and delivery
process, because these 2 processes have different
pace. In the development process we are following
standard Agile development methodologies, like
Scrum and Kanban. However, our focus is not limited
to just writing the code, but also on the user experi-
ence design, practices on delivering, launching and
scaling the product for the market.

We are also handling the control function on the:
•	 Scope
•	 Timeline
•	 Budget

Also we emphasize the importance of regular
workshops during the development process (once
per 6-12 months), in order to:
•	 Understand long-term plans and priorities for

the development
•	 Perform further risk analysis

Analytics
How do you measure the success of the new digital
product? Definitely not by the amount of code deliv-
ered or tasks closed in the project tracking software.
First of all, you measure it by whether the core hy-
pothesis is validated (i.e. there is a product market fit).
In order to identify that on a scale, you need to have
the metrics identified, and also captured. We ensure
the required data is available at the right time in the
right format.
 Also, we provide the technical analytics (related to

Culture and
Recruitment

YOU AS A PART OF OUR TEAM?

innocode.com

the product stability), based on the logs
and customer support requests.

Delivery
Quite often when you work with a custom
software development provider, you are
focusing on delivering the scope of the
first product version, but the actual prod-
uct delivery to the market is not covered
sufficiently.
 With competence in running and ensur-
ing stable operation of both the client’s
products and Innocode own digital prod-
ucts, we have developed the following
competences in regards to the delivery
process (after development is completed):
•	 Performance, load and end-user

testing
•	 Preparing documentations

(both end-user and technical
documentation)

•	 Preparing training sessions
•	 Competence on running the live

product operations
•	 Hosting environment
•	 Monitoring
•	 Support routines
•	 Status page’s setup and

configuration
•	 Experience of collaboration with your

client success team
•	 Analysis of the new product

requests
•	 Resolving incidents and support

cases
•	 On-site support possibilities

ticketco
Case Study:

Our cooperation with TicketCo started in 2012, and
as most good things - by coincidence. A friend of a
friend introduced us to Kaare Bottolfsen, TicketCo
founder and CEO. It was a perfect match because we
immediately felt that we had common values: deep
involvement of team members into the business con-
text, direct communication and transparency.
 TicketCo has been growing together with Innocode,
customer success worked directly with the develop-
ers. When TicketCo started serving some of the larg-
est festivals in Norway, Innocode’s R&D team visited
the festivals to test out the support process in person.

Innocode built an R&D department
for TicketCo in 2012, deeply integrated
into the TicketCo’s organization.

 TicketCo is creating the global standard for all kinds
of event payments. Driven by a strong wish to make
events easy, we gathered in 2011 to develop TicketCo
– a self-service and user-friendly ticketing solution
enabling organisers to rid themselves of expensive
hardware and obsolete technology.
 Since the launch in 2013, TicketCo has evolved into
what it is today in collaboration with more than 1,600
event organisers. A partnership deal with iZettle in
2014 enabled an omnichannel solution by seamlessly
integrating point of sales and making TicketCo even
more complete.
 By providing a frictionless payment journey for the
public and a single point of administration for the
event organiser, TicketCo is creating the best value
for both users and organisers. Through TicketCo,
organisers can sell both tickets, food and beverages,
merchandise and accommodations.

8 9

innocode.com

About TicketCoAbout our
cooperation

1 0 1 1

Prototyping / usertesting
We are building clickable pro-
totypes using InvisionApp /
Marvel. We are utilising both
internal user interview proce-
dures for the sanity-check run-
ning interviews with the existing
user groups.

A/B testing / funnelling /
analytics
We are using tools like Hotjar
(for identifying funnels in the
product to reduce drop-offs) on
the web and Appsee on mobile.
We have extensive experience
with Google Tag Manager /
Google Analytics.

Prioritisation
Most common issue (and the
main focus for the product
manager) is prioritisation. We are
utilising the combination of the
RICE (reach, impact, confidence,
effort) prioritisation score and
the ProductBoard tool for work-
ing with the roadmap.

DevOps
We have solid knowledge with
built tools, such as Git and Jen-
kins, and application containers,
such as Docker and Kubernetes.
 We also have experience with
cloud computing services, such
as Google Cloud, Microsoft
Azure and Amazon Web Ser-
vices.
 We are building separate
environments from the start. We
have existing procedures for
continuous integration (CI) and
continues deployment (CD)
We are performing load and
performance testing on most
of the projects. We also use the
tools for automated identifica-
tion.

After many years we have learned some
valuable lessons on having a set and

effective work process.
This creates better projects and

outcome for all parties.

WORKFLOW

LOADING EXPERIENCE

1 2 1 3

Docker Containerization -
containers are easily scal-
able, allowing to test soft-
ware simpler and eases
Infrastructure as Code (IaC)
process. We use containers
for both CI/CD processes
and deployments.

Kubernetes - the de facto
standard for container or-
chestration today. K8s is our
main platform we use to run
our workloads (both produc-
tion and development). We
also run our CI builds with
this.

Google Cloud - provides
Infrastructure, Platform,
and Serverless computing
environments. We use its
Kubernetes Engine to run
Kubernetes clusters. Also
we use number of its Ser-
vices/APIs.

AWS - We have experience
using a number of its Ser-
vices/APIs: EC2, ECS, Lamb-
da, Elastic Beanstalk, S3,
EFS, S3 Glacier, RDS, Elas-
tiCache, CloudWatch, AWS
Auto Scaling, Elasticsearch
Service, CloudFront, Route
53, Rekognition, Cognito,
GuardDuty, Inspector, WAF
& Shield, SES.

Cloudflare - Integrated
global cloud platform. We
have experience using a
number of its Services/
APIs among them: Caching,
Page Rules, Custom Pages,
Workers etc.
Serverless computing -
Cloud-computing execution
model in which the cloud
provider runs the server
and dynamically manages
the allocation of machine
resources. We have expe-
rience using such runtimes
as AWS Lambda and Cloud-
flare Workers.

PostgreSQL - is a powerful,
open-source object-re-
lational database system
with over 30 years of active
development where it has
earned a strong reputation
for reliability, feature robust-
ness, and performance.

MySQL - open-source
bhrelational database man-
agement system.

Elasticsearch - is a distrib-
uted, RESTful search and
analytics engine capable of
solving a growing number
of use cases. As the heart of
the Elastic Stack, it centrally
stores your data so you can
discover the expected and
uncover the unexpected.

Redis - is an open-source
(BSD licensed), in-memory
data structure store, used as
a database, cache and mes-
sage broker. It supports data
structures such as strings,
hashes, lists, sets, sorted
sets with range queries,
bitmaps, hyperloglogs, geo-
spatial indexes with radius
queries and streams.

InfluxDB - is used as a
data store for any use case
involving large amounts of
time-stamped data, includ-
ing DevOps monitoring, log
data, application metrics, IoT
sensor data, and real-time
analytics.

Infrastructure Datastore

Ruby - a dynamic, open
source programming lan-
guage with a focus on
simplicity and productivity. It
has an elegant syntax that is
natural to read and easy to
write.

Elixir - is a dynamic, func-
tional language designed
for building scalable and
maintainable applications.
Elixir leverages the Erlang
VM, known for running
low-latency, distributed and
fault-tolerant systems, while
also being successfully
used in web development
and the embedded software
domain.

PHP - Popular general-pur-
pose scripting language that
is especially suited to web
development. Fast, flexible
and pragmatic, PHP powers
everything from blog to the
most popular websites in
the world.

.NET - is a software frame-
work developed by Mic-
rosoft that runs primarily
on Microsoft Windows. It
includes a large class library
named as Framework Class
Library (FCL) and provides
language interoperability
across several programming
languages. Programs written
for .NET Framework execute
in a software environment
named the Common Lan-
guage Runtime (CLR). The
CLR is an application vir-
tual machine that provides
services such as security,
memory management, and
exception handling. FCL and
CLR together constitute the
.NET Framework.

Backend
Programming
Languages

JavaScript — a high-level,
interpreted programming
language. It is a language
which is also character-
ized as dynamic, weakly
typed, prototype-based and
multi-paradigm. Alongside
HTML and CSS, JavaScript is
one of the three core tech-
nologies of the World Wide
Web.

Sass — is the most mature,
stable, and powerful profes-
sional grade CSS extension
language in the world. It is
completely compatible with
all versions of CSS.

Frontend and
Stylesheet
Languages

React.JS - a JavaScript
library for building user in-
terfaces. It is maintained by
Facebook and a community
of individual developers and
companies. React can be
used as a base in the de-
velopment of a single-page
or mobile applications.
Complex React applications
usually require the use of
additional libraries for state
management, routing, and
interaction with an API.

Webpack - open-source
JavaScript module bundler
primarily for JavaScript, but
it‘s also used to transform
front-end assets like HTML,
CSS. Webpack takes mod-
ules with dependencies
and generates static assets
representing those modules.

Frontend Library
and Module Bundler

1 4 1 5

Swift - is a general-purpose
programming language built
using a modern approach
to safety, performance, and
software design patterns.
The goal of the Swift proj-
ect is to create the best
available language for uses
ranging from systems pro-
gramming, to mobile and
desktop apps, scaling up to
cloud services. Most impor-
tantly, Swift is designed to
make writing and maintain-
ing correct programs easier
for the developer.

Kotlin - is a statically typed
programming language that
runs on the Java virtual ma-
chine and also can be com-
piled to JavaScript source
code or use the LLVM com-
piler infrastructure.

WordPress - content man-
agement system based on
PHP and MySQL. WordPress
is most associated with
blogging (its original purpose
when first created) but has
evolved to support other
types of web content includ-
ing more traditional mailing
lists and forums, media
galleries, membership sites,
learning management sys-
tems (LMS) and online stores.
WordPress is used by more
than 60 million websites,
including 33.6% of the top 10
million websites as of April
2019, WordPress is one of the
most popular CMS solutions.

Native Mobile
Development

Content
Management System

Web Frameworks

Ruby on Rails, or Rails - is a
server-side web application
framework written in Ruby.
Rails is a model–view–con-
troller (MVC) framework, pro-
viding default structures for a
database, a web service, and
web pages. It encourages
and facilitates the use of web
standards such as JSON or
XML for data transfer, HTML,
CSS and JavaScript for user
interfacing.

Phoenix Framework - is a
web development frame-
work written in the functional
programming language Elix-
ir. Phoenix uses a server-side
model-view-controller (MVC)
pattern. Based on the Plug
library and ultimately the
Cowboy Erlang framework,
it was developed to provide
highly performant and scal-
able web applications.

Erlang OTP - is a program-
ming language and runtime
system for building mas-
sively scalable soft real-time
systems with requirements
on high availability. OTP is a
set of Erlang libraries, which
consists of the Erlang run-
time system, a number of
ready-to-use components
mainly written in Erlang, and
a set of design principles for
Erlang programs.

Apollo Client - is the best
way to use GraphQL to build
client applications. The client
is designed to help you
quickly build a UI that fetch-
es data with GraphQL and
can be used with any JavaS-
cript frontend.

O
U

R
 P

H
ILO

S
O

P
H

Y

What is the most import-
ant thing in collaboration?
We think it’s trust. How do

you build trust? Through transparency,
involvement and integrity. Each new initiative
or common project we start with a face to face
meeting and a workshop.

 We want to hear your story,
understand the goal, but also to
find out if we are able to work
together. We know from experience that
it’s much better to find out early in the process
if there are communication issues, differences
in values, or just incompatible.

1 6 1 7

Standards
GDPR - regulations in EU law on data
protection and privacy for all individuals
within the European Union and the Euro-
pean Economic Area.
REST API - a software architectural style
that defines a set of constraints to be
used for creating web services. Web ser-
vices that conform to the REST architec-
tural style provides interoperability be-
tween computer systems on the Internet.
GraphQL - an open-source data query
and manipulation language, and a run-
time for fulfilling queries with existing
data.
SOLID / DRY - principles of software
development that allows a programmer
to create a system to easily maintain and
extend over time.
International Software Testing Qualifi-
cations Board (ISTQB) - a standardized
qualification for software testers.
UX - the process of enhancing user sat-
isfaction with a product by improving the
usability, accessibility, and pleasure pro-
vided in the interaction with the product.
A11Y - we strive to develop our products
most accessible by each person, mean-
ing we code them in a way to fully comply
with WAI-ARIA specifications and support
all kinds of screen readers and multiple
navigation methods.

Quality Assurance
Activities:
•	 Analyze requirements
•	 Design test flows
•	 Perform testing on all stages of de-

velopment
•	 Create documentation (end-to-end

functional scenarios or a check list
of the final verification (Acceptance
testing))

•	 Report issues and revalidate fixes

Main QA phases:
Phase #1
•	 Functional testing is mainly to con-

firm that the functionalities match the
requirements.

•	 Confirmation testing is performed
to validate corrected functionalities

made after the client’s feedback or
defects found in the system.

•	 Integration testing is to validate if
features work together.

Phase #2
•	 Regression testing ensures new

functionality doesn’t introduce new
defects into a product.

Phase #3
•	 System testing is used to provide

acceptance of the system.

Approaches
Agile - iterative approach to project
management and software development
that advocates adaptive planning, evolu-
tionary development, early delivery, and
continual improvement as well as rapid
and flexible response to change.
Test-driven development - a software
development process that relies on the
repetition of a very short development cy-
cle. The requirements are turned into very
specific test cases and then the software
is improved to pass the new tests.
Code Review - a software quality assur-
ance activity in which one or several per-
sons check a program mainly by viewing
and reading parts of its source code. They
do so after implementation or as an inter-
ruption of implementation.
Code linting - the process of running a
program that analyse code for potential
errors.
Code Security Check - the process of
running a program that detects various
security vulnerability patterns, and tainted
analysis to track user input data, etc.
CI/CD - refers to the combined practices
of continuous integration and continuous
delivery. We use automated pipelines for
both automated testing and deployments.
We usually have a set of environments
(Production/Staging/Development) to
move code from one environment to an-
other, such as Dev to Stage or from Stage
to Prod, while we run automated and
manual tests and checks on them.
Infrastructure as Code - managing and
provisioning computer data centers
through machine-readable definition files
rather than physical hardware configura-
tion or interactive configuration tools.

Zero-waste is part of our culture at Innocode. We apply this phi-
losophy both physically and operationally. In the physical sense,
we sort waste at our Lviv office by having 12 different bins for
different types of waste and installed separate compost bins for
the organic waste. We also hold educational meet-ups for other
companies in the area.
In the operational sense, we consider time and effort as a resource
that should be used wisely. These have an impact on our working
processes and we apply them through lean methodologies and
verifying hypotheses before actual implementation.

ZERO WASTE

- together we create relevance

Digital Products Development

Innocode Norway

Morten Holst
+47 934 25 000

morten@innocode.no

Valerii Shypunov
+38 066 700 49 99

valerii@innocode.no

Innocode Sweden

Tomas Falk
tomas@innocode.com

+46 736 63 6790

Bjarte Falck Olsen
bjarte@innocode.com

+ 46 763 98 2109

Innocode U.S.

Steinar Bjørnsen
steinar@innocode.com

+1 415 351 8515

